Karhunen-loève-based reduced-complexity representation of the mixed-density messages in SPA on factor graph and its impact on BER

  • Authors:
  • Pavel Prochazka;Jan Sykora

  • Affiliations:
  • Department of Radio Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic;Department of Radio Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The sum product algorithm on factor graphs (FG/SPA) is a widely used tool to solve various problems in a wide area of fields. A representation of generally-shaped continuously valued messages in the FG/SPA is commonly solved by a proper parameterization of the messages. Obtaining such a proper parameterization is, however, a crucial problem in general. The paper introduces a systematic procedure for obtaining a scalar message representation with well-defined fidelity criterion in a general FG/SPA. The procedure utilizes a stochastic nature of the messages as they evolve during the FG/SPA processing. A Karhunen-Loève Transform (KLT) is used to find a generic canonical message representation which exploits the message stochastic behavior with mean square error (MSE) fidelity criterion. We demonstrate the procedure on a range of scenarios including mixture-messages (a digital modulation in phase parametric channel). The proposed systematic procedure achieves equal results as the Fourier parameterization developed especially for this particular class of scenarios.