MIJ2K Optimization using evolutionary multiobjective optimization algorithms

  • Authors:
  • Alvaro Luis Bustamante;José M. Molina López;Miguel A. Patricio

  • Affiliations:
  • Univ. Carlos III de Madrid, Avda. Univ. Carlos III, 22, 28270 Colmenarejo, Madrid, Spain;Univ. Carlos III de Madrid, Avda. Univ. Carlos III, 22, 28270 Colmenarejo, Madrid, Spain;Univ. Carlos III de Madrid, Avda. Univ. Carlos III, 22, 28270 Colmenarejo, Madrid, Spain

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2011

Quantified Score

Hi-index 12.05

Visualization

Abstract

This paper deals with the multiobjective definition of video compression and its optimization. The optimization will be done using NSGA-II, a well-tested and highly accurate algorithm with a high convergence speed developed for solving multiobjective problems. Video compression is defined as a problem including two competing objectives. We try to find a set of optimal, so-called Pareto-optimal solutions, instead of a single optimal solution. The two competing objectives are quality and compression ratio maximization. The optimization will be achieved using a new patent pending codec, called MIJ2K, also outlined in this paper. Video will be compressed with the MIJ2K codec applied to some classical videos used for performance measurement, selected from the Xiph.org Foundation repository. The result of the optimization will be a set of near-optimal encoder parameters. We also present the convergence of NSGA-II with different encoder parameters and discuss the suitability of MOEAs as opposed to classical search-based techniques in this field.