Minimizing deterministic lattice automata

  • Authors:
  • Shulamit Halamish;Orna Kupferman

  • Affiliations:
  • Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel;Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel

  • Venue:
  • FOSSACS'11/ETAPS'11 Proceedings of the 14th international conference on Foundations of software science and computational structures: part of the joint European conferences on theory and practice of software
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditional automata accept or reject their input, and are therefore Boolean. In contrast, weighted automata map each word to a value from a semiring over a large domain. The special case of lattice automata, in which the semiring is a finite lattice, has interesting theoretical properties as well as applications in formal methods. A minimal deterministic automaton captures the combinatoric nature and complexity of a formal language. Deterministic automata are used in run-time monitoring, pattern recognition, and modeling systems. Thus, the minimization problem for deterministic automata is of great interest, both theoretically and in practice. For traditional automata on finite words, a minimization algorithm, based on the Myhill-Nerode right congruence on the set of words, generates in polynomial time a canonical minimal deterministic automaton. A polynomial algorithm is known also for weighted automata over the tropical semiring. For general deterministic weighted automata, the problem of minimization is open. In this paper we study minimization of lattice automata. We show that it is impossible to define a right congruence in the context of lattices, and that no canonical minimal automaton exists. Consequently, the minimization problem is much more complicated, and we prove that it is NP-complete. As good news, we show that while right congruence fails already for finite lattices that are fully ordered, for this setting we are able to combine a finite number of right congruences and generate a minimal deterministic automaton in polynomial time.