Graph cube: on warehousing and OLAP multidimensional networks

  • Authors:
  • Peixiang Zhao;Xiaolei Li;Dong Xin;Jiawei Han

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL, USA;Microsoft Corporation, Redmond, WA, USA;Google Inc., Mountain View, CA, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA

  • Venue:
  • Proceedings of the 2011 ACM SIGMOD International Conference on Management of data
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider extending decision support facilities toward large sophisticated networks, upon which multidimensional attributes are associated with network entities, thereby forming the so-called multidimensional networks. Data warehouses and OLAP (Online Analytical Processing) technology have proven to be effective tools for decision support on relational data. However, they are not well-equipped to handle the new yet important multidimensional networks. In this paper, we introduce Graph Cube, a new data warehousing model that supports OLAP queries effectively on large multidimensional networks. By taking account of both attribute aggregation and structure summarization of the networks, Graph Cube goes beyond the traditional data cube model involved solely with numeric value based group-by's, thus resulting in a more insightful and structure-enriched aggregate network within every possible multidimensional space. Besides traditional cuboid queries, a new class of OLAP queries, crossboid, is introduced that is uniquely useful in multidimensional networks and has not been studied before. We implement Graph Cube by combining special characteristics of multidimensional networks with the existing well-studied data cube techniques. We perform extensive experimental studies on a series of real world data sets and Graph Cube is shown to be a powerful and efficient tool for decision support on large multidimensional networks.