Diversification improves interpolation

  • Authors:
  • Mark Giesbrecht;Daniel S. Roche

  • Affiliations:
  • University of Waterloo, Waterloo, ON, Canada;University of Waterloo, Waterloo, ON, Canada

  • Venue:
  • Proceedings of the 36th international symposium on Symbolic and algebraic computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of interpolating an unknown multivariate polynomial with coefficients taken from a finite field or as numerical approximations of complex numbers. Building on the recent work of Garg and Schost, we improve on the best-known algorithm for interpolation over large finite fields by presenting a Las Vegas randomized algorithm that uses fewer black box evaluations. Using related techniques, we also address numerical interpolation of sparse polynomials with complex coefficients, and provide the first provably stable algorithm (in the sense of relative error) for this problem, at the cost of modestly more evaluations. A key new technique is a randomization which makes all coefficients of the unknown polynomial distinguishable, producing what we call a diverse polynomial. Another departure from most previous approaches is that our algorithms do not rely on root finding as a subroutine. We show how these improvements affect the practical performance with trial implementations.