A simulation framework to evaluate airport gate allocation policies under extreme delay conditions

  • Authors:
  • Konstantinos Kontoyiannakis;Eduardo Serrano;Kevin Tse;Marcial Lapp;Amy Cohn

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • Winter Simulation Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Severe weather can lead to significant runway capacity reductions. Runway priority is typically given to inbound flights, thus fewer flights depart and fewer gates become available for arriving aircraft, leading to delays on the tarmac. We provide a simulation-based framework for evaluating gate allocation policies under reduced runway capacity. We first analyze a simple example, demonstrating the complexity of the problem and some key insights into different operating policies. Having shown that even simple scenarios can be difficult (if not impossible) to evaluate in closed form, we turn to simulation. We model the impact of reduced runway capacity on inbound and outbound flights by considering a major U. S. airport and its legacy carrier, focusing on the impact of delays on passengers. The contributions of this work are to highlight the challenges of accurately modeling the impact of runway capacity reductions and to present a simulation-based framework for evaluating operational policies.