Efficient histogram-based similarity search in ultra-high dimensional space

  • Authors:
  • Jiajun Liu;Zi Huang;Heng Tao Shen;Xiaofang Zhou

  • Affiliations:
  • School of ITEE, University of Queensland, Australia;School of ITEE, University of Queensland, Australia and Queensland Research Laboratory, National ICT Australia;School of ITEE, University of Queensland, Australia;School of ITEE, University of Queensland, Australia and Queensland Research Laboratory, National ICT Australia

  • Venue:
  • DASFAA'11 Proceedings of the 16th international conference on Database systems for advanced applications: Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent development in image content analysis has shown that the dimensionality of an image feature can reach thousands or more for satisfactory results in some applications such as face recognition. Although high-dimensional indexing has been extensively studied in database literature, most existing methods are tested for feature spaces with less than hundreds of dimensions and their performance degrades quickly as dimensionality increases. Given the huge popularity of histogram features in representing image content, in this papers we propose a novel indexing structure for efficient histogram based similarity search in ultra-high dimensional space which is also sparse. Observing that all possible histogram values in a domain form a finite set of discrete states, we leverage the time and space efficiency of inverted file. Our new structure, named two-tier inverted file, indexes the data space in two levels, where the first level represents the list of occurring states for each individual dimension, and the second level represents the list of occurring images for each state. In the query process, candidates can be quickly identified with a simple weighted state-voting scheme before their actual distances to the query are computed. To further enrich the discriminative power of inverted file, an effective state expansion method is also introduced by taking neighbor dimensions' information into consideration. Our extensive experimental results on real-life face datasets with 15,488 dimensional histogram features demonstrate the high accuracy and the great performance improvement of our proposal over existing methods.