Bounds on the complexity of halfspace intersections when the bounded faces have small dimension

  • Authors:
  • David Eppstein;Maarten Löffler

  • Affiliations:
  • University of California, Irvine, Irvine, CA, USA;University of California, Irvine, Irvine, CA, USA

  • Venue:
  • Proceedings of the twenty-seventh annual symposium on Computational geometry
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(nd) and the total number of bounded faces of the polyhedron is O(nd 2). For inputs in general position the number of bounded faces is O(nd). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs.