Enhancing accuracy and expressive power of range query answers over incomplete spatial databases via a novel reasoning approach

  • Authors:
  • Alfredo Cuzzocrea;Andrea Nucita

  • Affiliations:
  • ICAR-CNR and University of Calabria, Rende, Cosenza 87036, Italy;University of Messina, Messina 98166, Italy

  • Venue:
  • Data & Knowledge Engineering
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern spatial database applications built on top of distributed and heterogeneous spatial information sources such as conventional spatial databases underlying Geographical Information Systems (GIS), spatial data files and spatial information acquired or inferred from the Web, suffer from data integration and topological consistency problems. This more-and-more conveys in incomplete information, which makes answering range queries over incomplete spatial databases a leading research challenge in spatial database systems research. A significant instance of this setting is represented by the application scenario in which the geometrical information on a sub-set of spatial database objects is incomplete whereas the spatial database still stores topological relations among these objects (e.g., containment relations). Focusing on the spatial database application scenario above, in this paper we propose and experimentally assess a novel technique for efficiently answering range queries over incomplete spatial databases via integrating geometrical information and topological reasoning. We also propose I-SQE (Spatial Query Engine for Incomplete Information), an innovative query engine implementing this technique. Our proposed technique results not only effective but also efficient against both synthetic and real-life spatial data sets, and it finally allows us to enhance the quality and the expressive power of retrieved answers by meaningfully taking advantages from the amenity of representing spatial database objects via both the geometrical and the topological level.