Particle swarm optimisation with gradually increasing directed neighbourhoods

  • Authors:
  • Hongliang Liu;Enda Howely;Jim Duggan

  • Affiliations:
  • National University of Ireland, Galway, Galway, Ireland;National University of Ireland, Galway, Galway, Ireland;National University of Ireland, Galway, Galway, Ireland

  • Venue:
  • Proceedings of the 13th annual conference on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Particle swarm optimisation (PSO) is an intelligent random search algorithm, and the key to success is to effectively balance between the exploration of the solution space in the early stages and the exploitation of the solution space in the late stages. This paper presents a new dynamic topology called "gradually increasing directed neighbourhoods (GIDN)" that provides an effective way to balance between exploration and exploitation in the entire iteration process. In our model, each particle begins with a small number of connections and there are many small isolated swarms that improve the exploration ability. At each iteration, we gradually add a number of new connections between particles which improves the ability of exploitation gradually. Furthermore, these connections among particles are created randomly and have directions. We formalise this topology using random graph representations. Experiments are conducted on 31 benchmark test functions to validate our proposed topology. The results show that the PSO with GIDN performs much better than a number of the state of the art algorithms on almost all of the 31 functions.