Modeling the evolutionary dynamics of plasmids in spatial populations

  • Authors:
  • Brian D. Connelly;Luis Zaman;Philip K. McKinley;Charles Ofria

  • Affiliations:
  • Michigan State University, East Lansing, MI, USA;Michigan State University, East Lansing, MI, USA;Michigan State University, East Lansing, MI, USA;Michigan State University, East Lansing, MI, USA

  • Venue:
  • Proceedings of the 13th annual conference on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

One of the processes by which microorganisms are able to rapidly adapt to changing conditions is horizontal gene transfer, whereby an organism incorporates additional genetic material from sources other than its parent. These genetic elements may encode a wide variety of beneficial traits. Under certain conditions, many computational models capture the evolutionary dynamics of adaptive behaviors such as toxin production, quorum sensing, and biofilm formation, and have even provided new insights into otherwise unknown or misunderstood phenomena. However, such models rarely incorporate horizontal gene transfer, so they may be incapable of fully representing the vast repertoire of behaviors exhibited by natural populations. Although models of horizontal gene transfer exist, they rarely account for the spatial structure of populations, which is often critical to adaptive behaviors. In this work we develop a spatial model to examine how conjugation, one mechanism of horizontal gene transfer, can be maintained in populations. We investigate how both the costs of transfer and the benefits conferred affect evolutionary outcomes. Further, we examine how rates of transmission evolve, allowing this system to adapt to different environments. Through spatial models such as these, we can gain a greater understanding of the conditions under which horizontally-acquired behaviors are evolved and are maintained.