Heuristic techniques for variable and value ordering in CSPs

  • Authors:
  • Malek Mouhoub;Bahareh Jafari

  • Affiliations:
  • University of Regina, Regina, SK, Canada;University of Regina, Regina, SK, Canada

  • Venue:
  • Proceedings of the 13th annual conference on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

A Constraint Satisfaction Problem (CSP) is a powerful framework for representing and solving constraint problems. When solving a CSP using a backtrack search method, one important factor that reduces the size of the search space drastically is the order in which variables and values are examined. Many heuristics for static and dynamic variable ordering have been proposed and the most popular and powerful are those that gather information about the failures during the constraint propagation phase, in the form of constraint weights. These later heuristics are called conflict driven heuristics. In this paper, we propose two of these heuristics respectively based on Hill Climbing (HC) and Ant Colony Optimization (ACO) for weighing constraints. In addition, we propose two new value ordering techniques, respectively based on HC and ACO, that rank the values based on their ability to satisfy the constraints attached to their corresponding variables. Several experiments were conducted on various types of problems including random, quasi random and patterned problems. The results show that the proposed variable ordering heuristics, are successful especially in the case of hard random problems. Also, when using the proposed value and variable ordering together, we can improve the performance particularly in the case of random problems.