SMCGP2: self modifying cartesian genetic programming in two dimensions

  • Authors:
  • Simon Harding;Julian F. Miller;Wolfgang Banzhaf

  • Affiliations:
  • Memorial University, St John's, Canada;University of York, York, United Kingdom;Memorial University, St John's, Canada

  • Venue:
  • Proceedings of the 13th annual conference on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Self Modifying Cartesian Genetic Programming is a general purpose, graph-based, developmental form of Cartesian Genetic Programming. Using a combination of computational functions and special functions that can modify the phenotype at runtime, it has been employed to find general solutions to certain Boolean circuits and mathematical problems. In the present work, a new version, of SMCGP is proposed and demonstrated. Compared to the original SMCGP both the representation and the function set have been simplified. However, the new representation is also two-dimensional and it allows evolution and development to have more ways to solve a given problem. Under most situations we show that the new method makes the evolution of solutions to even parity and binary addition faster than with previous version of SMCGP.