Cellular data network infrastructure characterization and implication on mobile content placement

  • Authors:
  • Qiang Xu;Junxian Huang;Zhaoguang Wang;Feng Qian;Alexandre Gerber;Zhuoqing Morley Mao

  • Affiliations:
  • University of Michigan, Ann Arbor, MI, USA;University of Michigan, Ann Arbor, MI, USA;University of Michigan, Ann Arbor, MI, USA;University of Michigan, Ann Arbor, MI, USA;AT&T Labs Research, Florham Park, NJ, USA;University of Michigan, Ann Arbor, MI, USA

  • Venue:
  • ACM SIGMETRICS Performance Evaluation Review - Performance evaluation review
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Despite the tremendous growth in the cellular data network usage due to the popularity of smartphones, so far there is rather limited understanding of the network infrastructure of various cellular carriers. Understanding the infrastructure characteristics such as the network topology, routing design, address allocation, and DNS service configuration is essential for predicting, diagnosing, and improving cellular network services, as well as for delivering content to the growing population of mobile wireless users. In this work, we propose a novel approach for discovering cellular infrastructure by intelligently combining several data sources, i.e., server logs from a popular location search application, active measurements results collected from smartphone users, DNS request logs from a DNS authoritative server, and publicly available routing updates. We perform the first comprehensive analysis to characterize the cellular data network infrastructure of four major cellular carriers within the U.S. in our study. We conclude among other previously little known results that the current routing of cellular data traffic is quite restricted, as it must traverse a rather limited number (i.e., 4-6) of infrastructure locations (i.e., GGSNs), which is in sharp contrast to wireline Internet traffic. We demonstrate how such findings have direct implications on important decisions such as mobile content placement and content server selection. We observe that although the local DNS server is a coarse-grained approximation on the user's network location, for some carriers, choosing content servers based on the local DNS server is accurate enough due to the restricted routing in cellular networks. Placing content servers close to GGSNs can potentially reduce the end-to-end latency by more than 50% excluding the variability from air interface.