Mission-oriented k-coverage in mobile wireless sensor networks

  • Authors:
  • Habib M. Ammari;Sajal K. Das

  • Affiliations:
  • Wireless Sensor and Mobile Ad-hoc Networks Research Lab, Department of Computer Science, Hofstra University, Hempstead, NY;Center for Research in Wireless Mobility and Networking, Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX

  • Venue:
  • ICDCN'10 Proceedings of the 11th international conference on Distributed computing and networking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The problem of sensor deployment to achieve k-coverage of a field, where every point is covered by at least k sensors, is very critical in the design of energy-efficient wireless sensor networks (WSNs). It becomes more challenging in mission-oriented WSNs, where sensors have to move in order to k-cover a region of interest in the field. In this paper, we consider the problem of k-coverage in mission-oriented mobile WSNs which we divide into two subproblems, namely sensor placement and sensor selection. The sensor placement problem is to identify a subset of sensors and their locations in a region of interest so it is k-covered with a minimum number of sensors. The sensor selection problem is to determine which sensors should move to the above-computed locations in the region while minimizing the total energy consumption due to sensor mobility and communication. Simulation results show that our solution to the k-coverage problem in mission-oriented mobile WSNs outperforms an existing one in terms of the number of sensors needed to achieve k-coverage of a region of interest in the field as well as their total energy consumption.