Computing the maximum degree of minors in mixed polynomial matrices via combinatorial relaxation

  • Authors:
  • Satoru Iwata;Mizuyo Takamatsu

  • Affiliations:
  • Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan;Department of Information and System Engineering, Chuo University, Tokyo, Japan

  • Venue:
  • IPCO'11 Proceedings of the 15th international conference on Integer programming and combinatoral optimization
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Mixed polynomial matrices are polynomial matrices with two kinds of nonzero coefficients: fixed constants that account for conservation laws and independent parameters that represent physical characteristics. The computation of their maximum degrees of minors is known to be reducible to valuated independent assignment problems, which can be solved by polynomial numbers of additions, subtractions, and multiplications of rational functions. However, these arithmetic operations on rational functions are much more expensive than those on constants. In this paper, we present a new algorithm of combinatorial relaxation type. The algorithm finds a combinatorial estimate of the maximum degree by solving a weighted bipartite matching problem, and checks if the estimate is equal to the true value by solving independent matching problems. The algorithm mainly relies on fast combinatorial algorithms and performs numerical computation only when necessary. In addition, it requires no arithmetic operations on rational functions. As a byproduct, this method yields a new algorithm for solving a linear valuated independent assignment problem.