A universal flying amorphous computer

  • Authors:
  • Lukàš Petrů;Jiří Wiedermann

  • Affiliations:
  • Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic;Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic

  • Venue:
  • UC'11 Proceedings of the 10th international conference on Unconventional computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Amorphous computers are systems that derive their computational capability from the operation of vast numbers of simple, identical, randomly distributed and locally communicating units. The wireless communication ability and the memory capacity of the computational units is severely restricted due to their minimal size. Moreover, the units originally have no identifiers and can only use simple communication protocols that cannot guarantee a reliable message delivery. In this work we concentrate on a so-called flying amorphous computer whose units are in a constant motion. The units are modelled by miniature RAMs communicating via radio. We design a distributed probabilistic communication protocol and an algorithm enabling a simulation of a RAM in finite time. The underlying algorithms make use of a number of original ideas having no counterpart in the classical theory of distributed computing. Our result is the first one showing computational universality of a flying amorphous computer.