A simple deterministic reduction for the gap minimum distance of code problem

  • Authors:
  • Per Austrin;Subhash Khot

  • Affiliations:
  • University of Toronto;New York University

  • Venue:
  • ICALP'11 Proceedings of the 38th international colloquim conference on Automata, languages and programming - Volume Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a simple deterministic gap-preserving reduction from SAT to the Minimum Distance of Code Problem over F2. We also show how to extend the reduction to work over any finite field (of constant size). Previously a randomized reduction was known due to Dumer, Micciancio, and Sudan [9], which was recently derandomized by Cheng and Wan [7, 8]. These reductions rely on highly non-trivial coding theoretic constructions whereas our reduction is elementary. As an additional feature, our reduction gives a constant factor hardness even for asymptotically good codes, i.e., having constant rate and relative distance. Previously it was not known how to achieve deterministic reductions for such codes.