Runtime analysis of probabilistic programs with unbounded recursion

  • Authors:
  • Tomáš Brázdil;Stefan Kiefer;Antonín Kučera;Ivana Hutařová Vařeková

  • Affiliations:
  • Faculty of Informatics, Masaryk University, Czech Republic;Department of Computer Science, University of Oxford, United Kingdom;Faculty of Informatics, Masaryk University, Czech Republic;Faculty of Informatics, Masaryk University, Czech Republic

  • Venue:
  • ICALP'11 Proceedings of the 38th international conference on Automata, languages and programming - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the runtime in probabilistic programs with unbounded recursion. As underlying formal model for such programs we use probabilistic pushdown automata (pPDA) which exactly correspond to recursive Markov chains. We show that every pPDA can be transformed into a stateless pPDA (called "pBPA") whose runtime and further properties are closely related to those of the original pPDA. This result substantially simplifies the analysis of runtime and other pPDA properties. We prove that for every pPDA the probability of performing a long run decreases exponentially in the length of the run, if and only if the expected runtime in the pPDA is finite. If the expectation is infinite, then the probability decreases "polynomially". We show that these bounds are asymptotically tight. Our tail bounds on the runtime are generic, i.e., applicable to any probabilistic program with unbounded recursion. An intuitive interpretation is that in pPDA the runtime is exponentially unlikely to deviate from its expected value.