R3: robust replication routing in wireless networks with diverse connectivity characteristics

  • Authors:
  • Xiaozheng Tie;Arun Venkataramani;Aruna Balasubramanian

  • Affiliations:
  • University of Massachusetts Amherst, Amherst, MA, USA;University of Massachusetts Amherst, Amherst, MA, USA;University of Washington, Seattle, WA, USA

  • Venue:
  • MobiCom '11 Proceedings of the 17th annual international conference on Mobile computing and networking
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Our work is motivated by a simple question: can we design a simple routing protocol that ensures robust performance across networks with diverse connectivity characteristics such as meshes, MANETs, and DTNs? We identify packet replication as a key structural difference between protocols designed for opposite ends of the connectivity spectrum---DTNs and meshes. We develop a model to quantify under what conditions and by how much replication improves packet delays, and use these insights to drive the design of R3, a routing protocol that self-adapts replication to the extent of uncertainty in network path delays. We implement and deploy R3 on a mesh testbed and a DTN testbed. To the best of our knowledge, R3 is the first routing protocol to be deployed and evaluated on both a DTN testbed and a mesh testbed. We evaluate its performance through deployment, trace-driven simulations, and emulation experiments. Our results show that R3 achieves significantly better delay and goodput over existing protocols in a variety of network connectivity and load conditions.