Energy efficient monitoring for intrusion detection in battery-powered wireless mesh networks

  • Authors:
  • Amin Hassanzadeh;Radu Stoleru;Basem Shihada

  • Affiliations:
  • Department of Computer Science and Engineering, Texas A&M University;Department of Computer Science and Engineering, Texas A&M University;Department of Computer Science, King Abdullah University of Science and Technology, Saudi Arabia

  • Venue:
  • ADHOC-NOW'11 Proceedings of the 10th international conference on Ad-hoc, mobile, and wireless networks
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments batterypowered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.