Energy and mean-payoff parity markov decision processes

  • Authors:
  • Krishnendu Chatterjee;Laurent Doyen

  • Affiliations:
  • Institute of Science and Technology Austria;LSV, ENS Cachan & CNRS, France

  • Venue:
  • MFCS'11 Proceedings of the 36th international conference on Mathematical foundations of computer science
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, while the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition requires that the resource level never drops below 0, and the mean-payoff condition requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean-payoff parity MDPs, the problem is solvable in polynomial time.