Generation of strut-and-tie models by topology design using different material properties in tension and compression

  • Authors:
  • Mariano Victoria;Osvaldo M. Querin;Pascual Martí

  • Affiliations:
  • Department of Structures and Construction, Technical University of Cartagena, Cartagena, Spain 30202;School of Mechanical Engineering, University of Leeds, Leeds, UK LS2 9JT;Department of Structures and Construction, Technical University of Cartagena, Cartagena, Spain 30202

  • Venue:
  • Structural and Multidisciplinary Optimization
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Strut-and-Tie Method is considered a basic tool for analysis and design of reinforced concrete structures and has been incorporated in different codes of practice such as: EC-2, BS 8110, ACI 318-08, EHE-08, etc. The stress trajectories or load path methods have been used to generate strut-and-tie models. However, the models produced by these methods are not unique, with the result depending on the intuition or expertise of the designer, specifically with regards to region D of the structure, where the load path distribution is non-linear. Topology optimization can offer new opportunities to eliminate the limitations of traditional methods. The aim of this work was to study the effect of using different mechanical properties for the steel reinforcement and for the concrete on the emerging topology of strut-and-tie models. The Isolines Topology Design (ITD) method was used for this research. Three examples are presented to show the effect of different mechanical properties used for the tensile (steel) and compressive (concrete) regions of the structure, the: (1) Single short corbel; (2) Deep beam with opening; and (3) Double-sided beam-to-column joint.