Statistical machine learning for automatic assessment of physical activity intensity using multi-axial accelerometry and heart rate

  • Authors:
  • Fernando García-García;Gema García-Sáez;Paloma Chausa;Iñaki Martínez-Sarriegui;Pedro José Benito;Enrique J. Gómez;M. Elena Hernando

  • Affiliations:
  • Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain;Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain;Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain;Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain;Laboratory of Exercise Physiology, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Spain;Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain;Grupo de Bioingeniería y Telemedicina, Universidad Politícnica de Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain

  • Venue:
  • AIME'11 Proceedings of the 13th conference on Artificial intelligence in medicine
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators.