The twin bilinear diffie-Hellman inversion problem and applications

  • Authors:
  • Yu Chen;Liqun Chen

  • Affiliations:
  • School of Electronics Engineering and Computer Science, Peking University, China;Hewlett-Packard Laboratories, Bristol, United Kingdom

  • Venue:
  • ICISC'10 Proceedings of the 13th international conference on Information security and cryptology
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a new computational problem and call it the twin bilinear Diffie-Hellman inversion (BDHI) problem. Inspired by the technique proposed by Cash, Kiltz and Shoup, we have developed a new trapdoor test which enables us to prove that the twin BDHI problem is at least as hard as the ordinary BDHI problem even in the presence of a decision oracle that recognizes a solution to the problem. The relation between the two problems implies that many of the cryptographic constructions based on ordinary BDHI problem can be improved with a tighter security reduction. As one such application, we present a new variant of Sakai-Kasahara Identity-Based Encryption (SK-IBE) with a simple and efficient security proof in the random oracle model, under the computational BDHI problem. We also present a new Identity-Based Key Encapsulation Mechanism (ID-KEM) based on SK-IBE, which has a better security analysis than previous results.