Uni-orthogonal nonnegative tucker decomposition for supervised image classification

  • Authors:
  • Rafal Zdunek

  • Affiliations:
  • Institute of Telecommunications, Teleinformatics and Acoustics, Wroclaw University of Technology, Wroclaw, Poland

  • Venue:
  • ICIAP'11 Proceedings of the 16th international conference on Image analysis and processing: Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Tucker model with orthogonality constraints (often referred to as the HOSVD) assumes decomposition of a multi-way array into a core tensor and orthogonal factor matrices corresponding to each mode. Nonnegative Tucker Decomposition (NTD) model imposes nonnegativity constraints onto both core tensor and factor matrices. In this paper, we discuss a mixed version of the models, i.e. where one factor matrix is orthogonal and the remaining factor matrices are nonnegative. Moreover, the nonnegative factor matrices are updated with the modified Barzilai-Borwein gradient projection method that belongs to a class of quasi-Newton methods. The discussed model is efficiently applied to supervised classification of facial images, hand-written digits, and spectrograms of musical instrument sounds.