CrimeWalker: a recommendation model for suspect investigation

  • Authors:
  • Mohammad A. Tayebi;Mohsen Jamali;Martin Ester;Uwe Glässer;Richard Frank

  • Affiliations:
  • Simon Fraser University, Vancouver, Canada;Simon Fraser University, Vancouver, Canada;Simon Fraser University, Vancouver, Canada;Simon Fraser University, Vancouver, Canada;Simon Fraser University, Vancouver, Canada

  • Venue:
  • Proceedings of the fifth ACM conference on Recommender systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Law enforcement and intelligence agencies have long realized that analysis of co-offending networks, networks of offenders who have committed crimes together, is invaluable for crime investigation, crime reduction and prevention. Investigating crime can be a challenging and difficult task, especially in cases with many potential suspects and inconsistent witness accounts or inconsistencies between witness accounts and physical evidence. We present here a novel approach to crime suspect recommendation based on partial knowledge of offenders involved in a crime incident and a known co-offending network. To solve this problem, we propose a random walk based method for recommending the top-K potential suspects. By evaluating the proposed method on a large crime dataset for the Province of British Columbia, Canada, we show experimentally that this method outperforms baseline random walk and association rule-based methods. Additionally, results obtained for public domain data from experiments for co-author recommendation on a DBLP co-authorship network are consistent with those on the crime dataset. Compared to the crime dataset, the performance of all competitors is much better on the DBLP dataset, confirming that crime suspect recommendation is an inherently harder task.