A dynamic niching quantum genetic algorithm for automatic evolution of clusters

  • Authors:
  • Dongxia Chang;Yao Zhao

  • Affiliations:
  • Institute of Information Science, Beijing jiaotong University, Beijing, China;Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China

  • Venue:
  • CAIP'11 Proceedings of the 14th international conference on Computer analysis of images and patterns - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a novel genetic clustering algorithm, called a dynamic niching quantum genetic clustering algorithm (DNQGA), which is based on the concept and principles of quantum computing, such as the qubits and superposition of states. Instead of binary representation, a boundary-coded chromosome is used. Moreover, a dynamic identification of the niches is performed at each generation to automatically evolve the optimal number of clusters as well as the cluster centers of the data set. After getting the niches of the population, a Q-gate with adaptive selection of the angle for every niches is introduced as a variation operator to drive individuals toward better solutions. Several data sets are used to demonstrate its superiority. The experimental results show that DNQGA clustering algorithm has high performance, effectiveness and flexibility.