Sparse classification for computer aided diagnosis using learned dictionaries

  • Authors:
  • Meizhu Liu;Le Lu;Xiaojing Ye;Shipeng Yu;Marcos Salganicoff

  • Affiliations:
  • University of Florida, Gainesville, FL;Siemens Medical Solutions, Malvern, PA;-;-;-

  • Venue:
  • MICCAI'11 Proceedings of the 14th international conference on Medical image computing and computer-assisted intervention - Volume Part III
  • Year:
  • 2011

Quantified Score

Hi-index 0.02

Visualization

Abstract

Classification is one of the core problems in computer-aided cancer diagnosis (CAD) via medical image interpretation. High detection sensitivity with reasonably low false positive (FP) rate is essential for any CAD system to be accepted as a valuable or even indispensable tool in radiologists' workflow. In this paper, we propose a novel classification framework based on sparse representation. It first builds an overcomplete dictionary of atoms for each class via K-SVD learning, then classification is formulated as sparse coding which can be solved efficiently. This representation naturally generalizes for both binary and multiwise classification problems, and can be used as a standalone classifier or integrated with an existing decision system. Our method is extensively validated in CAD systems for both colorectal polyp and lung nodule detection, using hospital scale, multi-site clinical datasets. The results show that we achieve superior classification performance than existing state-of-the-arts, using support vector machine (SVM) and its variants [1, 2], boosting [3], logistic regression [4], relevance vector machine (RVM) [5,6], or k-nearest neighbor (KNN) [7].