Segmenting images by combining selected atlases on manifold

  • Authors:
  • Yihui Cao;Yuan Yuan;Xuelong Li;Baris Turkbey;Peter L. Choyke;Pingkun Yan

  • Affiliations:
  • Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Sha ...;Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Sha ...;Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Sha ...;National Institutes of Health, National Cancer Institute, Molecular Imaging Program, Bethesda, MD;National Institutes of Health, National Cancer Institute, Molecular Imaging Program, Bethesda, MD;Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Sha ...

  • Venue:
  • MICCAI'11 Proceedings of the 14th international conference on Medical image computing and computer-assisted intervention - Volume Part III
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Atlas selection and combination are two critical factors affecting the performance of atlas-based segmentation methods. In the existing works, those tasks are completed in the original image space. However, the intrinsic similarity between the images may not be accurately reflected by the Euclidean distance in this high-dimensional space. Thus, the selected atlases may be away from the input image and the generated template by combining those atlases for segmentation can be misleading. In this paper, we propose to select and combine atlases by projecting the images onto a low-dimensional manifold. With this approach, atlases can be selected according to their intrinsic similarity to the patient image. A novel method is also proposed to compute the weights for more efficiently combining the selected atlases to achieve better segmentation performance. The experimental results demonstrated that our proposed method is robust and accurate, especially when the number of training samples becomes large.