Competing against the best nearest neighbor filter in regression

  • Authors:
  • Arnak S. Dalalyan;Joseph Salmon

  • Affiliations:
  • Université Paris Est, Ecole des Ponts ParisTech, Marne-la-Vallée Cedex 2, France;Electrical and Computer Engineering, Duke University, Durham, NC

  • Venue:
  • ALT'11 Proceedings of the 22nd international conference on Algorithmic learning theory
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Designing statistical procedures that are provably almost as accurate as the best one in a given family is one of central topics in statistics and learning theory. Oracle inequalities offer then a convenient theoretical framework for evaluating different strategies, which can be roughly classified into two classes: selection and aggregation strategies. The ultimate goal is to design strategies satisfying oracle inequalities with leading constant one and rate-optimal residual term. In many recent papers, this problem is addressed in the case where the aim is to beat the best procedure from a given family of linear smoothers. However, the theory developed so far either does not cover the important case of nearest-neighbor smoothers or provides a suboptimal oracle inequality with a leading constant considerably larger than one. In this paper, we prove a new oracle inequality with leading constant one that is valid under a general assumption on linear smoothers allowing, for instance, to compete against the best nearest-neighbor filters.