The robustness of stability under link and node failures

  • Authors:
  • Carme Àlvarez;Maria Blesa;Maria Serna

  • Affiliations:
  • -;-;-

  • Venue:
  • Theoretical Computer Science
  • Year:
  • 2011

Quantified Score

Hi-index 5.23

Visualization

Abstract

In the area of communication systems, stability refers to the property of keeping the amount of traffic in the system always bounded over time. Different communication system models have been proposed in order to capture the unpredictable behavior of some users and applications. Among those proposed models the adversarial queueing theory (aqt) model turned out to be the most adequate to analyze an unpredictable network. Until now, most of the research done in this field did not consider the possibility of the adversary producing failures on the network structure. The adversarial models proposed in this work incorporate the possibility of dealing with node and link failures provoked by the adversary. Such failures produce temporal disruptions of the connectivity of the system and increase the collisions of packets in the intermediate hosts of the network, and thus the average traffic load. Under such a scenario, the network is required to be equipped with some mechanism for dealing with those collisions. In addition to proposing adversarial models for faulty systems we study the relation between the robustness of the stability of the system and the management of the queues affected by the failures. When the adversary produces link or node failures the queues associated to the corresponding links can be affected in many different ways depending on whether they can receive or serve packets, or rather that they cannot. In most of the cases, protocols and networks containing very simple topologies, which were known to be universally stable in the aqt model, turn out to be unstable under some of the newly proposed adversarial models. This shows that universal stability of networks is not a robust property in the presence of failures.