Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA

  • Authors:
  • George Bosilca;Aurelien Bouteiller;Anthony Danalis;Mathieu Faverge;Azzam Haidar;Thomas Herault;Jakub Kurzak;Julien Langou;Pierre Lemarinier;Hatem Ltaief;Piotr Luszczek;Asim YarKhan;Jack Dongarra

  • Affiliations:
  • -;-;-;-;-;-;-;-;-;-;-;-;-

  • Venue:
  • IPDPSW '11 Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a method for developing dense linear algebra algorithms that seamlessly scales to thousands of cores. It can be done with our project called DPLASMA (Distributed PLASMA) that uses a novel generic distributed Direct Acyclic Graph Engine (DAGuE). The engine has been designed for high performance computing and thus it enables scaling of tile algorithms, originating in PLASMA, on large distributed memory systems. The underlying DAGuE framework has many appealing features when considering distributed-memory platforms with heterogeneous multicore nodes: DAG representation that is independent of the problem-size, automatic extraction of the communication from the dependencies, overlapping of communication and computation, task prioritization, and architecture-aware scheduling and management of tasks. The originality of this engine lies in its capacity to translate a sequential code with nested-loops into a concise and synthetic format which can then be interpreted and executed in a distributed environment. We present three common dense linear algebra algorithms from PLASMA~(Parallel Linear Algebra for Scalable Multi-core Architectures), namely: Cholesky, LU, and QR factorizations, to investigate their data driven expression and execution in a distributed system. We demonstrate through experimental results on the Cray XT5 Kraken system that our DAG-based approach has the potential to achieve sizable fraction of peak performance which is characteristic of the state-of-the-art distributed numerical software on current and emerging architectures.