Solving k-Set Agreement with Stable Skeleton Graphs

  • Authors:
  • Martin Biely;Peter Robinson;Ulrich Schmid

  • Affiliations:
  • -;-;-

  • Venue:
  • IPDPSW '11 Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum
  • Year:
  • 2011

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper we consider the k-set agreement problem in distributed message-passing systems using a round-based approach: Both synchrony of communication and failures are captured just by means of the messages that arrive within a round, resulting in round-by-round communication graphs that can be characterized by simple communication predicates. We introduce the weak communication predicate PSources(k) and show that it is tight for k-set agreement, in the following sense: We (i) prove that there is no algorithm for solving (k-1)-set agreement in systems characterized by PSources(k), and (ii) present a novel distributed algorithm that achieves k-set agreement in runs where PSources(k) holds. Our algorithm uses local approximations of the stable skeleton graph, which reflects the underlying perpetual synchrony of a run. We prove that this approximation is correct in all runs, regardless of the communication predicate, and show that graph-theoretic properties of the stable skeleton graph can be used to solve $k$-set agreement if PSources(k) holds.