Hadoop acceleration through network levitated merge

  • Authors:
  • Yandong Wang;Xinyu Que;Weikuan Yu;Dror Goldenberg;Dhiraj Sehgal

  • Affiliations:
  • Auburn University;Auburn University;Auburn University;Mellanox Technologies;Mellanox Technologies

  • Venue:
  • Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hadoop is a popular open-source implementation of the MapReduce programming model for cloud computing. However, it faces a number of issues to achieve the best performance from the underlying system. These include a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage latest high speed interconnects. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plugin components implemented in C++ for fast data movement, overcoming its existing limitations. A novel network-levitated merge algorithm is introduced to merge data without repetition and disk access. In addition, a full pipeline is designed to overlap the shuffle, merge and reduce phases. Our experimental results show that Hadoop-A doubles the data processing throughput of Hadoop, and reduces CPU utilization by more than 36%.