Privacy preserving indexing for eHealth information networks

  • Authors:
  • Yuzhe Tang;Ting Wang;Ling Liu;Shicong Meng;Balaji Palanisamy

  • Affiliations:
  • Georgia Tech, Atlanta, GA, USA;College of computing, Atlanta, GA, USA;Georgia Tech, Atlanta, GA, USA;Georgia Tech, Atlanta, GA, USA;Georgia Tech, Atlanta, GA, USA

  • Venue:
  • Proceedings of the 20th ACM international conference on Information and knowledge management
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The past few years have witnessed an increasing demand for the next generation health information networks (e.g., NHIN[1]), which hold the promise of supporting large-scale information sharing across a network formed by autonomous healthcare providers. One fundamental capability of such information network is to support efficient, privacy-preserving (for both users and providers) search over the distributed, access controlled healthcare documents. In this paper we focus on addressing the privacy concerns of content providers; that is, the search should not reveal the specific association between contents and providers (a.k.a. content privacy). We propose SS-PPI, a novel privacy-preserving index abstraction, which, in conjunction of distributed access control-enforced search protocols, provides theoretically guaranteed protection of content privacy. Compared with existing proposals (e.g., flipping privacy-preserving index[2]), our solution highlights with a series of distinct features: (a) it incorporates access control policies in the privacy-preserving index, which improves both search efficiency and attack resilience; (b) it employs a fast index construction protocol via a novel use of the secrete-sharing scheme in a fully distributed manner (without trusted third party), requiring only constant (typically two) round of communication; (c) it provides information-theoretic security against colluding adversaries during index construction as well as query answering. We conduct both formal analysis and experimental evaluation of SS-PPI and show that it outperforms the state-of-the-art solutions in terms of both privacy protection and execution efficiency.