A TPM-enabled remote attestation protocol (TRAP) in wireless sensor networks

  • Authors:
  • Hailun Tan;Wen Hu;Sanjay Jha

  • Affiliations:
  • the University of New South Wales, Sydney, Australia;CSIRO, Brisbane, Australia;the University of New South Wales, Sydney, Australia

  • Venue:
  • Proceedings of the 6th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given the limited resources and computational power of current embedded sensor devices, memory protection is difficult to achieve and generally unavailable. Hence, the software run-time buffer overflow that is used by the worm attacks in the Internet could be easily exploited to inject malicious codes into Wireless Sensor Networks (WSNs). Previous software-based remote code verification approaches such as SWATT and SCUBA have been shown difficult to deploy in recent work. In this paper, we propose and implement a remote attestation protocol for detecting unauthorized tampering in the application codes running on sensor nodes with the assistance of Trusted Platform Modules (TPMs), the tiny, cost-effective and tamper-proof cryptographic microcontrollers. In our design, each sensor node is equipped with a TPM and the firmware running on the node could be verified by the other sensor nodes in a WSN, including the sink. Specifically, we present a hardware-based remote attestation protocol, discuss the potential attacks an adversary could launch against the protocol, and provide comprehensive system performance results of the protocol in a multi-hop sensor network testbed.