The multi-symplectic Fourier pseudospectral method for solving two-dimensional Hamiltonian PDEs

  • Authors:
  • Yaming Chen;Songhe Song;Huajun Zhu

  • Affiliations:
  • -;-;-

  • Venue:
  • Journal of Computational and Applied Mathematics
  • Year:
  • 2011

Quantified Score

Hi-index 7.29

Visualization

Abstract

In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov-Kuznetsov (ZK) equation and the Kadomtsev-Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.