Low power hardware-based image compression solution for wireless camera sensor networks

  • Authors:
  • Med Lassaad Kaddachi;Adel Soudani;Vincent Lecuire;Kholdoun Torki;Leila Makkaoui;Jean-Marie Moureaux

  • Affiliations:
  • Laboratoire d'électronique et micro-électronique (LAB-IT06) Faculté des Sciences de Monastir 5019, Monastir (FSM), Tunisia;Laboratoire d'électronique et micro-électronique (LAB-IT06) Faculté des Sciences de Monastir 5019, Monastir (FSM), Tunisia;Centre de Recherche en Automatique de Nancy, Nancy-Université, CNRS, Campus Sciences, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France;Circuits Multi-Project, 46, Avenue Félix VIALLET, 38031 GRENOBLE Cedex, France;Centre de Recherche en Automatique de Nancy, Nancy-Université, CNRS, Campus Sciences, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France;Centre de Recherche en Automatique de Nancy, Nancy-Université, CNRS, Campus Sciences, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France

  • Venue:
  • Computer Standards & Interfaces
  • Year:
  • 2012

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we present and evaluate a hardware solution for user-driven and packet loss tolerant image compression, especially designed to enable low power image compression and communication over wireless camera sensor networks (WCSNs). The proposed System-on-Chip is intended to be designed as a hardware coprocessor embedded in the camera sensor node. The goal is to relieve the node microcontroller of the image compression tasks and to achieve high-speed and low power image processing. The interest of our solution is twofold. First, compression settings can be changed at runtime (upon reception of a request message sent by an end user or according to the internal state of the camera sensor node). Second, the image compression chain includes a (block of) pixel interleaving scheme which significantly improves the robustness against packet loss in image communication. We discuss in depth the internal hardware architecture of the encoder chip which is planned to reach high performance running in FPGAs and in ASIC circuits. Synthesis results and relevant performance comparisons with related works are presented.