Relative loss bounds for on-line density estimation with the exponential family of distributions

  • Authors:
  • Katy S. Azoury;M. K. Warmuth

  • Affiliations:
  • College of Business, San Fkancisco State University, San Francisco, CA;Computer Science Department, University of California, Santa Cruz, CA

  • Venue:
  • UAI'99 Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider on-line density estimation with a parameterized density from the exponential family. The on-line algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss which is the negative log-likelihood of the example w.r.t. the past parameter of the algorithm. An off-line algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the on-line algorithm over the total loss of the off-line algorithm. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a certain divergence to derive and analyze the algorithms. This divergence is a relative entropy between two exponential distributions.