A hybrid algorithm to compute marginal and joint beliefs in Bayesian networks and its complexity

  • Authors:
  • Mark Bloemeke;Marco Valtorta

  • Affiliations:
  • Artificial Intelligence Laboratory, Computer Science Department, University of South Carolina;Artificial Intelligence Laboratory, Computer Science Department, University of South Carolina

  • Venue:
  • UAI'98 Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

There exist two general forms of exact algorithms for updating probabilities in Bayesian Networks. The first approach involves using a structure, usually a clique tree, and performing local message based calculation to extract the belief in each variable. The second general class of algorithm involves the use of non-serial dynamic programming techniques to extract the belief in some desired group of variables. In this paper we present a hybrid algorithm based on the latter approach yet possessing the ability to retrieve the belief in all single variables. The technique is advantageous in that it saves a NP-hard computation step over using one algorithm of each type. Furthermore, this technique re-enforces a conjecture of Jensen and Jensen [JJ94] in that it still requires a single NP-hard step to set up the structure on which inference is performed, as we show by confirming Li and D'Ambrosio's [LD94] conjectured NP-hardness of OFP.