Flexible policy construction by information refinement

  • Authors:
  • Michael C. Horsch;David Poole

  • Affiliations:
  • Department of Computer Science, University of British Columbia, Vancouver, B.C., Canada;Department of Computer Science, University of British Columbia, Vancouver, B.C., Canada

  • Venue:
  • UAI'96 Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

We report on work towards flexible algorithms for solving decision problems represented as influence diagrams. An algorithm is given to construct a tree structure for each decision node in an influence diagram. Each tree represents a decision function and is constructed incrementally. The improvements to the tree converge to the optimal decision function (neglecting computational costs) and the asymptotic behaviour is only a constant factor worse than dynamic programming techniques, counting the number of Bayesian network queries. Empirical results show how expected utility increases with the size of the tree and the number of Bayesian net calculations.