A probabilistic network of predicates

  • Authors:
  • Dekang Lin

  • Affiliations:
  • Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada

  • Venue:
  • UAI'92 Proceedings of the Eighth international conference on Uncertainty in artificial intelligence
  • Year:
  • 1992

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bayesian networks are directed acyclic graphs representing independence relationships among a set of random variables. A random variable can be regarded as a set of exhaustive and mutually exclusive propositions. We argue that there are several drawbacks resulting from the propositional nature and acyclic structure of Bayesian networks. To remedy these shortcomings, we propose a probabilistic network where nodes represent unary predicates and which may contain directed cycles. The proposed representation allows us to represent domain knowledge in a single static network even though we cannot determine the instantiations of the predicates before hand. The ability to deal with cycles also enables us to handle cyclic causal tendencies and to recognize recursive plans.