A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations

  • Authors:
  • Max Duarte;Zdenk Bonaventura;Marc Massot;Anne Bourdon;Stéphane Descombes;Thierry Dumont

  • Affiliations:
  • CNRS, UPR 288, "Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion", Grande Voie des Vignes, 92295 Chítenay-Malabry, France and Ecole Centrale Paris, Grande Voie des ...;CNRS, UPR 288, "Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion", Grande Voie des Vignes, 92295 Chítenay-Malabry, France and Ecole Centrale Paris, Grande Voie des ...;CNRS, UPR 288, "Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion", Grande Voie des Vignes, 92295 Chítenay-Malabry, France and Ecole Centrale Paris, Grande Voie des ...;CNRS, UPR 288, "Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion", Grande Voie des Vignes, 92295 Chítenay-Malabry, France and Ecole Centrale Paris, Grande Voie des ...;Laboratoire J.A. Dieudonné - UMR CNRS 6621, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France;Université de Lyon, Université Lyon 1, INSA de Lyon, Ecole Centrale de Lyon, Institut Camille Jordan - UMR CNRS 5208, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2012

Quantified Score

Hi-index 31.45

Visualization

Abstract

This paper presents a new resolution strategy for multi-scale streamer discharge simulations based on a second order time adaptive integration and space adaptive multiresolution. A classical fluid model is used to describe plasma discharges, considering drift-diffusion equations and the computation of electric field. The proposed numerical method provides a time-space accuracy control of the solution, and thus, an effective accurate resolution independent of the fastest physical time scale. An important improvement of the computational efficiency is achieved whenever the required time steps go beyond standard stability constraints associated with mesh size or source time scales for the resolution of the drift-diffusion equations, whereas the stability constraint related to the dielectric relaxation time scale is respected but with a second order precision. Numerical illustrations show that the strategy can be efficiently applied to simulate the propagation of highly nonlinear ionizing waves as streamer discharges, as well as highly multi-scale nanosecond repetitively pulsed discharges, describing consistently a broad spectrum of space and time scales as well as different physical scenarios for consecutive discharge/post-discharge phases, out of reach of standard non-adaptive methods.