Evolution of the CPG with sensory feedback for bipedal locomotion

  • Authors:
  • Sooyol Ok;DuckSool Kim

  • Affiliations:
  • College of Engineering, TongMyong University of Information Technology, Busan, Rep. of Korea;College of Engineering, TongMyong University of Information Technology, Busan, Rep. of Korea

  • Venue:
  • ICNC'05 Proceedings of the First international conference on Advances in Natural Computation - Volume Part II
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper shows how the computational model, which simulates the coordinated movements of human-like bipedal locomotion, can be evolutionally generated without the elaboration of manual coding. In the research on bio-mechanical engineering, robotics and neurophysiology, the mechanism of human bipedal walking is of major interest. It can serve as a basis for developing several applications such as computer animation and humanoid robots. Nevertheless, because of the complexity of human's neuronal system that interacts with the body dynamics making the walking movements, much is left unknown about the control mechanism of locomotion, and researchers were looking for the optimal model of the neuronal system by extensive efforts of trial and error. In this work, genetic programming is utilized to induce the model of the neural system automatically and its effectives are shown by simulating a human bipedal gait with the obtained model. The experimental results show some promising evidence for evolutionary generation of the human-like bipedal locomotion.