A Nearly-m log n Time Solver for SDD Linear Systems

  • Authors:
  • Ioannis Koutis;Gary L. Miller;Richard Peng

  • Affiliations:
  • -;-;-

  • Venue:
  • FOCS '11 Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science
  • Year:
  • 2011

Quantified Score

Hi-index 0.05

Visualization

Abstract

We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\bar{x} = b$ for some (unknown) vector $\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.