A Low-Power CoAP for Contiki

  • Authors:
  • Matthias Kovatsch;Simon Duquennoy;Adam Dunkels

  • Affiliations:
  • -;-;-

  • Venue:
  • MASS '11 Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Internet of Things devices will by and large be battery-operated, but existing application protocols have typically not been designed with power-efficiency in mind. In low-power wireless systems, power-efficiency is determined by the ability to maintain a low radio duty cycle: keeping the radio off as much as possible. We present an implementation of the IETF Constrained Application Protocol (CoAP) for the Contiki operating system that leverages the ContikiMAC low-power duty cycling mechanism to provide power efficiency. We experimentally evaluate our low-power CoAP, demonstrating that an existing application layer protocol can be made power-efficient through a generic radio duty cycling mechanism. To the best of our knowledge, our CoAP implementation is the first to provide power-efficient operation through radio duty cycling. Our results question the need for specialized low-power mechanisms at the application layer, instead providing low-power operation only at the radio duty cycling layer.