Introducing dynamic prior knowledge to partially-blurred image restoration

  • Authors:
  • Hongwei Zheng;Olaf Hellwich

  • Affiliations:
  • Computer Vision & Remote Sensing, Berlin University of Technology, Berlin;Computer Vision & Remote Sensing, Berlin University of Technology, Berlin

  • Venue:
  • DAGM'06 Proceedings of the 28th conference on Pattern Recognition
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The paper presents an unsupervised method for partially-blurred image restoration without influencing unblurred regions or objects. Maximum a posteriori estimation of parameters in Bayesian regularization is equal to minimizing energy of a dataset for a given number of classes. To estimate the point spread function (PSF), a parametric model space is introduced to reduce the searching uncertainty for PSF model selection. Simultaneously, PSF self-initializing does not rely on supervision or thresholds. In the image domain, a gradient map as a priori knowledge is derived not only for dynamically choosing nonlinear diffusion operators but also for segregating blurred and unblurred regions via an extended graph-theoretic method. The cost functions with respect to the image and the PSF are alternately minimized in a convex manner. The algorithm is robust in that it can handle images that are formed in variational environments with different blur and stronger noise.