Evaluation of summarization schemes for learning in streams

  • Authors:
  • Alec Pawling;Nitesh V. Chawla;Amitabh Chaudhary

  • Affiliations:
  • University of Notre Dame;University of Notre Dame;University of Notre Dame

  • Venue:
  • PKDD'06 Proceedings of the 10th European conference on Principle and Practice of Knowledge Discovery in Databases
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditional discretization techniques for machine learning, from examples with continuous feature spaces, are not efficient when the data is in the form of a stream from an unknown, possibly changing, distribution. We present a time-and-memory-efficient discretization technique based on computing ε-approximate exponential frequency quantiles, and prove bounds on the worst-case error introduced in computing information entropy in data streams compared to an offline algorithm that has no efficiency constraints. We compare the empirical performance of the technique, using it for feature selection, with (streaming adaptations of) two popular methods of discretization, equal width binning and equal frequency binning, under a variety of streaming scenarios for real and artificial datasets. Our experiments show that ε-approximate exponential frequency quantiles are remarkably consistent in their performance, in contrast to the simple and efficient equal width binning that perform quite well when the streams are from stationary distributions, and quite poorly otherwise.