Refining aggregate conditions in relational learning

  • Authors:
  • Celine Vens;Jan Ramon;Hendrik Blockeel

  • Affiliations:
  • Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium;Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium;Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

  • Venue:
  • PKDD'06 Proceedings of the 10th European conference on Principle and Practice of Knowledge Discovery in Databases
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In relational learning, predictions for an individual are based not only on its own properties but also on the properties of a set of related individuals. Many systems use aggregates to summarize this set. Features thus introduced compare the result of an aggregate function to a threshold. We consider the case where the set to be aggregated is generated by a complex query and present a framework for refining such complex aggregate conditions along three dimensions: the aggregate function, the query used to generate the set, and the threshold value. The proposed aggregate refinement operator allows a more efficient search through the hypothesis space and thus can be beneficial for many relational learners that use aggregates. As an example application, we have implemented the refinement operator in a relational decision tree induction system. Experimental results show a significant efficiency gain in comparison with the use of a less advanced refinement operator.